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2

Transition Systems and Products

In this chapter we introduce transition systems as a formal model of sequen-
tial systems, and synchronous products of transition systems as a model of
concurrent systems.

2.1 Transition Systems

A transition system is a tuple A = 〈S, T, α, β, is〉, where

• S is a set of states,
• T is a set of transitions,
• α: T → S associates with each transition its source state,
• β: T → S associates with each transition its target state, and
• is ∈ S is the initial state.

Graphically, states are represented by circles, and a transition t with s and
s′ as source and target states is represented by an arrow leading from s to s′

and labeled by t. We mark the initial state is with a small wedge.

Example 2.1. Figure 2.1 shows a transition system A = 〈S, T, α, β, is〉 where
S = {s1, s2, s3, s4}, T = {t1, t2, t3, t4, t5}, and is = s1. We have for instance
α(t1) = s1 and β(t1) = s2.

We call a finite or infinite sequence of transitions a transition word or
just a word. Given a transition t, we call the triple 〈α(t), t, β(t)〉 a step of A.
A state s enables a transition t if there is a state s′ such that 〈s, t, s′〉 is a
step. A (possibly empty) transition word t1t2 . . . tk is a computation of A
if there is a sequence s0s1 . . . sk of states such that 〈si−1, ti, si〉 is a step for
every i ∈ {1, . . . , k};1 we say that the computation starts at s0 and leads to
sk. A computation is a history if s0 = is, i.e., if it can be executed from the
initial state. An infinite word t1t2 . . . is an infinite computation of A if there

1 Notice that there is at most one such sequence of states.

2

Transition Systems and Products

In this chapter we introduce transition systems as a formal model of sequen-
tial systems, and synchronous products of transition systems as a model of
concurrent systems.

2.1 Transition Systems

A transition system is a tuple A = 〈S, T, α, β, is〉, where

• S is a set of states,
• T is a set of transitions,
• α: T → S associates with each transition its source state,
• β: T → S associates with each transition its target state, and
• is ∈ S is the initial state.

Graphically, states are represented by circles, and a transition t with s and
s′ as source and target states is represented by an arrow leading from s to s′

and labeled by t. We mark the initial state is with a small wedge.

Example 2.1. Figure 2.1 shows a transition system A = 〈S, T, α, β, is〉 where
S = {s1, s2, s3, s4}, T = {t1, t2, t3, t4, t5}, and is = s1. We have for instance
α(t1) = s1 and β(t1) = s2.

We call a finite or infinite sequence of transitions a transition word or
just a word. Given a transition t, we call the triple 〈α(t), t, β(t)〉 a step of A.
A state s enables a transition t if there is a state s′ such that 〈s, t, s′〉 is a
step. A (possibly empty) transition word t1t2 . . . tk is a computation of A
if there is a sequence s0s1 . . . sk of states such that 〈si−1, ti, si〉 is a step for
every i ∈ {1, . . . , k};1 we say that the computation starts at s0 and leads to
sk. A computation is a history if s0 = is, i.e., if it can be executed from the
initial state. An infinite word t1t2 . . . is an infinite computation of A if there

1 Notice that there is at most one such sequence of states.



Model Checking -  Kapitel 6  -  Teil 1 9

Example 2.1. Figure 2.1 shows a transition system A = 〈S, T, α, β, is〉 where
S = {s1, s2, s3, s4}, T = {t1, t2, t3, t4, t5}, and is = s1. We have for instance
α(t1) = s1 and β(t1) = s2.

s1

s2 s3t5

s4

t1 t2

t3 t4

Fig. 2.1. A transition system
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We call a finite or infinite sequence of transitions a transition word or
just a word. Given a transition t, we call the triple 〈α(t), t, β(t)〉 a step of A.
A state s enables a transition t if there is a state s′ such that 〈s, t, s′〉 is a
step. A (possibly empty) transition word t1t2 . . . tk is a computation of A
if there is a sequence s0s1 . . . sk of states such that 〈si−1, ti, si〉 is a step for
every i ∈ {1, . . . , k};1 we say that the computation starts at s0 and leads to
sk. A computation is a history if s0 = is, i.e., if it can be executed from the
initial state. An infinite word t1t2 . . . is an infinite computation of A if there

is an infinite sequence s0, s1, . . . of states such that 〈si−1, ti, si〉 is a step for
every i ≥ 1, and an infinite history if moreover s0 = is.

If h is a history leading to a state s and c is a computation that can be
executed from s, then hc is also a history. We then say that h can be extended
by c.
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2.2 Products of Transition Systems

Let A1, . . . ,An be transition systems, where Ai = 〈Si, Ti, αi, βi, isi〉. A syn-
chronization constraint T is a subset of the set

(T1 ∪ {ε}) × · · ·× (Tn ∪ {ε}) \ {〈ε, . . . , ε〉}

where ε is an special symbol intended to denote inaction (idling). The elements
of T are called global transitions. If t = 〈t1, . . . , tn〉 and ti %= ε, then we say
that Ai participates in t.2 The tuple A = 〈A1, . . . ,An,T〉 is called the product
of A1, . . . ,An under T. A1, . . . ,An are the components of A.

Intuitively, a global transition t = 〈t1, . . . tn〉 models a possible move of
A1, . . . ,An. If ti = ε, then t can occur without Ai even “noticing”.

2 This is the reason why 〈ε, . . . , ε〉 is excluded from the set of global transitions: at
least one component must participate in every global transition.
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Example 2.2. Figure 2.2 shows a product of transition systems with two com-
ponents and seven global transitions. The first component participates in five
of them, and the second component in four.

T = {〈t1, ε〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉 , 〈ε, u1〉 , 〈ε, u3〉}

u3t5

r3

s2

t2t1

t3 t4

s3

r1s1

s4

u1

r2

u2

Fig. 2.2. A product of transition systems

u2
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A global state of A is a tuple s = 〈s1, . . . , sn〉, where si ∈ Si for every
i ∈ {1, . . . , n}. The initial global state is the tuple is = 〈is1, . . . , isn〉.

A step of A is a triple 〈s, t, s′〉, where s = 〈s1, . . . , sn〉 and s′ = 〈s′1, . . . , s
′
n〉

are global states and t = 〈t1, . . . , tn〉 is a global transition satisfying the
following conditions for all i ∈ {1, . . . , n}:

• if ti $= ε, then s′i = βi(ti) and si = α(ti); and
• if ti = ε, then s′i = si.

We say that s enables t if there is a global state s′ such that 〈s, t, s′〉 is a step.
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Example 2.3. Consider the product of Fig. 2.2. The initial global state is
〈s1, r1〉. The global transition word 〈t1, ε〉 〈ε, u1〉 〈t3, u2〉 is a global compu-
tation, because of the following three steps:

〈〈s1, r1〉 , 〈t1, ε〉 , 〈s2, r1〉〉 ,
〈〈s2, r1〉 , 〈ε, u1〉 , 〈s2, r2〉〉 , and
〈〈s2, r2〉 , 〈t3, u2〉 , 〈s4, r3〉〉 .

9

T = {〈t1, ε〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉 , 〈ε, u1〉 , 〈ε, u3〉}

u3t5

r3

s2

t2t1

t3 t4

s3

r1s1

s4

u1

r2

u2

Fig. 2.2. A product of transition systems

u2

The sequence 〈t1, ε〉 〈t3, u1〉 is not a global computation, because 〈t3, u1〉 is not
a global transition.



Model Checking -  Kapitel 6  -  Teil 1
15

The Petri net representation of a product A = 〈A1, . . . ,An,T〉 of transi-
tion systems Ai = 〈Si, Ti, αi, βi, isi〉 is the Petri net (P, T, F, M0) given by:

• P = S1 ∪ . . . ∪ Sn,4

• T = T,
• F = {(s, t) | ti $= ε and s = αi(ti) for some i ∈ {1, . . . , n}} ∪

{(t, s) | ti $= ε and s = βi(ti) for some i ∈ {1, . . . , n}},
where ti denotes the i-th component of t ∈ T; and

• M0 = {is1, . . . , isn}.
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9

T = {〈t1, ε〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉 , 〈ε, u1〉 , 〈ε, u3〉}

u3t5

r3

s2

t2t1

t3 t4

s3

r1s1

s4

u1

r2

u2

Fig. 2.2. A product of transition systems

u2

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉
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Formally, the interleaving semantics of a product A = 〈A1, . . . ,An,T〉 is
the transition system TA = 〈S, T, α, β, is〉, where

• S is the set of global states of A,
• T is the set of steps 〈s, t, s′〉 of A,
• for every step 〈s, t, s′〉 ∈ T : α(〈s, t, s′〉) = s and β(〈s, t, s′〉) = s′; and
• is = is.

Observe that |S| =
∏n

i=1 |Si|, and so the interleaving semantics of A can
be exponentially larger than A, even if we consider only the states that are

reachable from the initial state. Figure 2.5 shows the inter
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〉 , 〈t2, ε〉 , 〈t3, u2〉 , 〈t4, u2〉 , 〈t5, ε〉 , 〈ε, u1〉 , 〈ε, u3〉}

u3

r3

s2

t2t1

t3 t4

s3

r1s1

s4

u1

r2

u2

Fig. 2.2. A product of transition systems

u2

18

〈s4, r1〉〈s1, r3〉

〈ε, u1〉〈ε, u1〉

〈s1, r1〉
〈ε, u3〉

〈t1, ε〉 〈t2, ε〉〈ε, u1〉

〈s1, r2〉
〈s2, r1〉 〈s3, r1〉

〈t2, ε〉〈t1, ε〉

〈s2, r2〉 〈s3, r2〉

〈t4, u2〉〈t3, u2〉

〈s4, r3〉

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

〈ε, u3〉

〈ε, u3〉

〈ε, u3〉〈t5, ε〉

〈s4, r2〉〈s2, r3〉 〈s3, r3〉

〈t5, ε〉

〈t5, ε〉
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3

Unfolding Products

(a)

s1

s2 s3t5

s4

t1 t2

t3 t4

t1 t2

s2s3

(b)

s1

s2 s3

t4t3

s4 s4

t5 t5

s1 s1

s2 s3

t1 t2t1t2

Fig. 3.1. The transition system of Fig. 2.1 (a) and its unfolding (b) as a transition
system
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We now address the question of how to unfold a product. The answer
is easy if we take the interleaving representation of products as defined in
Sect. 2.4: The unfolding of a product A can be defined as the unfolding of
the transition system TA. However, in this book we investigate a different
notion of unfolding, which corresponds to taking the Petri net representation
of products. In Sect. 3.1 we introduce, first intuitively and then formally, the
notion of branching processes, and the notion of the unfolding of a product as
the “largest” branching process. In Sect. 3.2 we present some basic properties
of branching processes. Section 3.3 explains why unfolding-based verification
can be more efficient than verification based on the interleaving representation
of products. Section 3.4 discusses the algorithmic problem of computing the
unfolding. Section 3.5 introduces the notion of a search procedure for solving
a verification problem. Finally, Sect. 3.6 sets the plan for the next chapters.
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r1s1

N0:

〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

s2

〈t1, ε〉

r1s1

N1:

r2s2

〈t1, ε〉

r1s1

N2:

〈ε, u1〉

N3:

s4 r3

〈t3, u2〉

r2s2

〈t1, ε〉 〈ε, u1〉

r1s1
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〈t3, u2〉

r2s3s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

〈t5, ε〉

〈t4, u2〉

s4 r3

〈ε, u3〉

N3:

s4 r3

〈t3, u2〉

r2s2

〈t1, ε〉 〈ε, u1〉

r1s1

N5:

s4 r3 s4 r3

〈t4, u2〉〈t3, u2〉

s3 r2s2

〈t1, ε〉 〈t2, ε〉 〈ε, u1〉

r1s1

N4:

s4 r3

〈t3, u2〉

s3 r2s2

〈t2, ε〉 〈ε, u1〉

r1s1

〈t1, ε〉
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Convention 1. In order to avoid confusion, it is convenient to use different
names for the transitions of a transition system or product of transition sys-
tems, and for the transitions of its unfolding. We call the transitions of an
unfolding events. An event corresponds to a particular occurrence of a tran-
sition. In the figures we use the natural numbers 1, 2, 3, . . . as event names.

Definition 3.2. The union
⋃

N of a (finite or infinite) set N of Petri nets
is defined as the Petri net

⋃
N =




⋃

(P,E,F,M0)∈N

P,
⋃

(P,E,F,M0)∈N

E,
⋃

(P,E,F,M0)∈N

F,
⋃

(P,E,F,M0)∈N

M0



 .
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r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

Fig. 3.3. The unfolding of the product represented in Fig. 2.4 on p. 10
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We solve this problem by introducing a canonical way of naming nodes.
Loosely speaking, an event labeled by a global transition t ∈ T is given the
name (t, X), where X is the set containing the names of the input places of
the event. Similarly, a place labeled by a local state s ∈ Si is given the name
(s, {x}), where x is the name of the unique input event of the place. We say
that (t, X) and (s, {x}) are the canonical names of the nodes.

r1s1

N0:

in Fig. 3.2 are given the names (s1, ∅) and (r1, ∅). In

s2

〈t1, ε〉

r1s1

N1:

in Fig. 3.2 are given the names (s1, ∅) and (r1, ∅). In

is (〈t1, ε〉 , {(s1, ∅)}), and the name of its output place

is (〈
is (s2, {(〈t1, ε〉 , {(s1, ∅)})}).
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Formally, given a product A = 〈A1, . . . ,An,T〉 we define the set C
of canonical names as the smallest set satisfying the following property: if
x ∈ S1 ∪ . . . ∪ Sn ∪ T and X is a finite subset of C, then (x, X) ∈ C. We
call x the label of (x, X), and say that (x, X) is labeled by x. Notice that C is
nonempty, because (x, ∅) belongs to C for every x ∈ S1 ∪ . . . ∪ Sn ∪ T.

Definition 3.4. A C-Petri net is a Petri net (P, E, F, M0) such that:

(1)P ∪ E ⊆ C,
(2) if (x, X) ∈ P ∪ E, then X = •(x, X); and
(3) for every (x, X) ∈ P , (x, X) ∈ M0 if and only if X = ∅.

s2

〈t1, ε〉

r1s1

N1:

in Fig. 3.2 are given the names (s1, ∅) and (r1, ∅). In

is (〈t1, ε〉 , {(s1, ∅)}), and the name of its output place

is (〈
is (s2, {(〈t1, ε〉 , {(s1, ∅)})}).
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Definition 3.5. The set of branching processes of a product A is the smallest
set of C-Petri nets satisfying the following conditions:

(1) Let Is = {(is1, ∅), . . . , (isn, ∅)}, where {is1, . . . , isn} is the set of initial
states of the components of A. The C-Petri net having Is as set of places
and no events is a branching process of A.

(2) Let N be a branching process of A such that some reachable marking of
N enables a global transition t. Let M be the set containing the places of
the marking that are labeled by •t. The C-Petri net obtained by adding to
N the event (t, M) and one place (s, {(t, M)}) for every s ∈ t• is also a
branching process of N . We call the event (t, M) a possible extension of
N .

(3) If B is a (finite or infinite) set of branching processes of A, then so is⋃
B.

s2

〈t1, ε〉

r1s1

N1:

in Fig. 3.2 are given the names (s1, ∅) and (r1, ∅). In

is (〈t1, ε〉 , {(s1, ∅)}), and the name of its output place

is (〈
is (s2, {(〈t1, ε〉 , {(s1, ∅)})}).
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s2

〈t1, ε〉

r1s1

N1:

in Fig. 3.2 are given the names (s1, ∅) and (r1, ∅). In

is (〈
is (s2, {(〈t1, ε〉 , {(s1, ∅)})}).

is (〈t1, ε〉 , {(s1, ∅)}), and the name of its output place

r2

〈ε, u1〉(〈ε, u1〉 , {(r1, ∅)}) and (

) and (r2, {( 〈ε, u1〉 , {(r1, ∅)})})

In particular, Prop. 3.7 implies the existence of a very tight relation be-
tween the histories of a product A and the occurrence sequences of its un-
folding. In order to formulate this result, we extend the labeling function λ
to sequences of events. Given a finite or infinite sequence σ = e0 e1 e2 . . ., we
define λ(σ) = λ(e0)λ(e1)λ(e2) . . ..

Corollary 3.9. (a) If σ is a (finite or infinite) occurrence sequence of the
unfolding, then λ(σ) is a history of A.

(b) If h is a history of A, then some occurrence sequence of the unfolding
satisfies λ(σ) = h.
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3.2 Some Properties of Branching Processes

We list some properties of branching processes. They can all be easily proved
by structural induction on the definition of branching processes, and in most
cases we only sketch their proofs.

Definition 3.10. A place of an unfolding is an i-place if it is labeled by a
state of the ith component. The i-root is the unique i-place having no input
events. An event is an i-event if it is labeled by a global transition 〈t1, . . . , tn〉
such that ti #= ε. In other words, an event is an i-event if the ith component
participates in the global transition it is labeled with.
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Proposition 3.11. Let N be a branching process of A. Then:

(1)N has no cycles, i.e., no (nonempty) path of arcs leads from a node to
itself.

(2) For every i ∈ {1, . . . n}, every reachable marking of N puts a token in
exactly one i-place.

(3)The set of i-nodes of the branching process N forms a tree with the i-root
as root. Moreover, the tree only branches at places, i.e., if a node of the
tree has more than one child, then it is a place.

(4)A place of N can get marked at most once (i.e., if along an occurrence
sequence it becomes marked and then unmarked, then it never becomes
marked again), and an event of N can occur at most once in an occurrence
sequence.
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r3

t5

s4

u3

r1

21 3

4 5

6 7 8 9

1514131110

16 17 18 19

s1 r1

u1t2t1

s2 s3 r2

s4

t5

s1

s2

s4 r3 s4 s4

〈t3, u2〉 〈t4, u2〉

t2t1 t2u112 t1

s3 r2 s2 s3

〈t3, u2〉 〈t4, u2〉 〈t3, u2〉 〈t4, u2〉

s4r3 r3 r3

s1

r3

r1

u1

r2

u3

Fig. 3.3. The unfolding of the product represented in Fig. 2.4 on p. 10
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3.2.2 Causality, Conflict, and Concurrency

Definition 3.13. Let x and y be two nodes of an unfolding.

• We say that x is a causal predecessor of y, denoted by x < y, if there is
a (non-empty) path of arcs from x to y; as usual we denote by x ≤ y that
either x < y or x = y; two nodes x and y are causally related if x ≤ y or
x ≥ y.

• We say that x and y are in conflict, denoted by x#y, if there is a place
z, different from x and y, from which one can reach x and y, exiting z by
different arcs.

• We say that x and y are concurrent, denoted by x co y, if x and y are
neither causally related nor in conflict.

Proposition 3.14. Let N be a branching process of A and let P be a set of
places of N . There is a reachable marking M of N such that P ⊆ M if and
only if the places of P are pairwise concurrent.
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Proposition 3.15. (1) For every two nodes x, y of a branching process exactly
one of the following holds: (a) x and y are causally related, (b) x and y
are in conflict, (c) x and y are concurrent.

(2) If x and y are causally related and x != y, then either x < y or y < x, but
not both.
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3.2.3 Configurations

A realization of a set of events is an occurrence sequence of the branching
process in which each event of the set occurs exactly once, and no other
events occur. A set of events can have zero, one, or more realizations. For
instance, the sets {1, 2} and {4, 6} in Fig. 3.3 on p. 17 have no realizations
(for the latter, recall that occurrence sequences start at the initial marking,
which enables neither event 4 nor event 6), and the set {1, 3, 4, 7} has two
realizations, namely the sequences 1 3 4 7 and 3 1 4 7.
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r1

21 3
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Definition 3.17. A set of events of an unfolding is a configuration if it has
at least one realization.

Proposition 3.18. Let N be a branching process of a product A and let E
be a set of events of N .

(1)E is a configuration if and only if it is causally closed, i.e., if e ∈ E
and e′ < e then e′ ∈ E, and conflict-free, i.e., no two events of E are in
conflict.

(2)All the realizations of a finite configuration lead to the same reachable
marking of N .
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b4 = 〈ε, ε, ε, ε, b4〉 , c = 〈c0, c1, c2, c3, c4〉}

T = {a = 〈a0, a1, ε, ε, ε〉 ,b1 = 〈ε, b1, ε, ε, ε〉 ,

b2 = 〈ε, ε, b2, ε, ε〉 ,b3 = 〈ε, ε, ε, b3, ε〉 ,

r1 s1 t1 u1 v1

b1

c1 c3 c4

b2 b4a0

c0

r3 s3 t3 u3 v3

r2

c2

b3a1

t2 u2 v2s4 s2

We wish to know if the global transition c = 〈c0, . . . , c4〉 is executable.
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r1 s1 t1 u1 v1

r2 s2 t2 u2 v2

r3 s3 t3 u3 v3

c

a b3b2b1 b4

s4

with the product. The important point is that the unfolding of Fig. 3.7 is
more compact. The transition system has 24 global states and 40 transitions,

while the unfolding has 11 places and five events. If these num

transition system has 3 · 2n−2 global states and even more global transitions.

components the unfolding contains 2n + 1 places and n events, while the

bei n Transitionen:
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Proposition 3.21. Let N be a branching process of a product A, and let t be
a global transition of A. Deciding whether N can be extended with an event
labeled by t is NP-complete.

Proof. For membership in NP we guess a global transition t and a set of
places of the unfolding M = {p1, . . . , pk} labeled by •t = {s1, . . . , sk}, and
check in polynomial time, using the procedure sketched above, that its input
places are pairwise concurrent. After this we still need to check in polynomial
time that no event exists in the unfolding labeled with t and having preset
M to ensure the event is a proper extension of the unfolding.

We prove NP-hardness by a reduction from CNF-3SAT formula over vari-
ables x1, x2, . . . , xn. A literal is either a variable xi or its negation xi. Let
F = C1 ∧ C2 ∧ . . . ∧ Cm be a CNF-3SAT formula, where each conjunct Cj

is a disjunction of at most three literals. We construct in polynomial time a
product F of transition systems defined as follows:
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Fig. 3.9. Petri net representation of the product F for F = (x1 ∨ x2) ∧ x1
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Consider now the prefix of the unfolding of F obtained by removing from
the full unfolding all events labeled by sat. This prefix can be easily con-
structed in polynomial time in the size of F because all global transitions
(except for sat) have a bounded synchronization degree. The prefix can be
extended with an event labeled by sat if and only if the formula F is satisfi-
able. !
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3.5 Search Procedures

In this book we consider verification questions of the form: “Does the system
have a (possibly infinite) history satisfying a given property?” Our computa-
tional approach consists of computing larger and larger prefixes of the unfold-
ing, until we have enough information to answer the question. The prefixes
are generated by search procedures.

A search procedure consists of a search scheme and a search strategy. The
search strategy determines, given the current prefix of the unfolding, which
event should be added to it next. Notice that a strategy may be nondetermin-
istic, i.e., it may decide that any element out of the set of possible extensions
should be added next. Depth-first and breadth-first are typical strategies for
transition systems. The search scheme depends on the property we are inter-
ested in. It determines which leaves of the prefix need not be explored further,
and whether the search is successful. More precisely, a search scheme consists
of two parts:

• A termination condition determining which leaves of the current prefix are
terminals, i.e., nodes whose causal successors need not to be explored.5

• A success condition determining which terminals are successful, i.e., ter-
minals proving that the property holds.
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procedure unfold(product A) {
N := unique branching process of A without events;
T := ∅; S := ∅; X := Ext(N , T );
while (X "= ∅) {

choose an event e ∈ X according to the search strategy;
extend N with e;
if e is a terminal according to the search scheme then {

T := T ∪ {e};
if e is successful according to the search scheme then {

S := S ∪ {e}; /* A successful terminal found */
};

};
X := Ext(N , T );

};
return 〈N , T, S〉;

};

Fig. 3.10. Pseudo-code of the unfolding procedure

is a program variable containing the set of terminal events oT

is the variable containing the set of successfulS

the current prefix , while is the variable containing the set of successful
Ext(N , T ) denotes the set of events that can be added to N

according to Def. 3.5 on p. 18 and have no causal predecessor in the set of

terminal events T . The search procedure terminates if and when
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a successful terminal, but for the analysis it is more conven
this definition.) Given a product A and a terminating search procedure P ,
the final prefix is the prefix generated by P on input A after termination.
The final prefix is successful if it contains at least one successful terminal.
Given a property φ, a terminating procedure P is complete if the final prefix
it generates is successful for every product A satisfying φ, and sound if every
product A such that the final prefix is successful satisfies φ.

The ultimate goal of this book is to present a search procedure for model
checking a product A against arbitrary properties expressed in Linear Tem-
poral Logic (LTL), a popular specification language.6 The search procedure
is presented in Chap. 8. It is based on search procedures for three central
verification problems which are also interesting on their own:
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• The executability problem: Given a set G ⊆ T of global transitions,
can some transition of G ever be executed, i.e., is there a global history
whose last event is labeled by an element of G?

• The repeated executability problem: Given a set R ⊆ T of global
transitions, can some transition of R be executed infinitely often, i.e., is
there an infinite global history containing infinitely many events labeled
by transitions of R?
The livelock problem: Given a partitioning of the global transitions into

• The livelock problem: Given a partitioning of the global transitions into
visible and invisible, and given a set L ⊆ T of visible transitions, is there
an infinite global history in which a transition of L occurs, followed by an
infinite sequence of invisible transitions?
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Theorem 3.24. The executability, repeated executability, and livelock prob-
lems are PSPACE-complete for products.

Proof. (Sketch.) We only consider the executability problem, since the proof
for the other two problems is similar. To prove membership in PSPACE we
observe first that, since NPSPACE=PSPACE by Savitch’s theorem (see, e.g.,
[98]), it suffices to provide a nondeterministic algorithm for the problem using
only polynomial space. The algorithm uses a variable v to store one global
state; initially, v = is. While v != s, the algorithm repeatedly selects a global
transition t enabled at v, computes the global state s′ such that 〈v, t, s′〉, and
sets v := s′. If at some point v = s, the algorithm stops and outputs the
result “reachable”. Obviously, the algorithm only needs linear space.
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result “reachable”. Obviously, the algorithm only needs linear space.
PSPACE-hardness is proved by reduction from the following problem:

given a polynomially space-bounded Turing machine M and an input x, does
M accept x? We assume w.l.o.g. that M has one single accepting state qf .

Let p(n) be the polynomial limiting the number of tape cells that M uses
on an input of length n. We construct a product A =

〈
AQ,A1, . . . ,Ap(|x|),T

〉
.

The component AQ contains one state sq for each control state q of M . The
intended meaning of sq is that the machine M is currently in state q. For
every i ∈ {1, . . . , p(|x|)} and for every tape symbol a of M , the component
Ai contains two states s〈a,0〉 and s〈a,1〉. The intended meaning of s〈a,0〉 is:

the ith tape cell currently contains the symbol a, and the head of M is not
reading the cell. The intended meaning of s〈a,1〉 is: the ith tape cell currently
contains the symbol a, and the head of M is reading the cell. The initial
states of the component are chosen according to the initial configuration of
M : the initial state of AQ is sq0 , where q0 is the initial state of M ; the initial
state of component A1 is s〈x1,1〉, where x1 is the first letter of the input x;
and so on. The transitions of the components and the synchronization vector
T are chosen so that the execution of a global transition of A corresponds
to a move of M . Additionally, the component Aq has a transition tf with
sqf

as both source and target state, and T contains a synchronization vector
tf = 〈tf , ε, . . . , ε〉.

Clearly, M halts for input x if and only if the instance of the executability
problem for A given by G = {tf} has a positive answer. !


